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compact abelian model, in this scenario, the previous decoupling of the off-diagonal degrees
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Other important scenarios for correlated monopoles and center vortices, observed in lattice

simulations, are also accomodated in our general formulation.
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1. Introduction

In the last years, many ideas have been put forward in order to tackle the problem of

confinement in pure Yang-Mills theories. A variety of scenarios such as dual superconduc-

tivity [1]–[3], abelian dominance [4, 5], center dominance [6]–[10], the implementation of a

Gribov horizon [11, 12], and the infrared behavior of the gluon propagator [13, 14], have

been explored.

In the mechanism of dual superconductivity, the QCD vacuum is expected to behave

as a superconductor of chromomagnetic charges, which implies the confinement of chromo-

electric charges.

This nice mechanism is realized in the SU(N) Georgi-Glashow model in (2 + 1)D,

where Z(N) vortices condense [3], in pure compact QED in three and four dimensions,
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which contain monopole-like singularities [15, 16], and in N = 2 supersymmetric Yang-

Mills theories [17].

In SU(N) pure Yang-Mills theories, one of the main problems to implement the above

mentioned mechanism is the identification of the magnetic objects that could condense.

For instance, monopoles can appear in the abelian projection, where a gauge fixing con-

dition that diagonalizes a field that transforms in the adjoint representation of SU(N) is

considered [18]. Monopoles also arise naturally in the representation proposed in refs. [4]

and [19]–[24], where the gluon fields are decomposed along a general local color direction

n̂, with the advantage that no particular gauge fixing condition is invoked in this case.

In these scenarios, monopole condensation has been analyzed in the lattice, by measuring

different disorder parameters [25]–[28], and theoretically, by studying the effective action

for the magnetic background (see [29] and references therein).

In the mechanism of abelian dominance it is conjectured that the infrared description

of SU(N) Yang-Mills theories is dominated by the N − 1 abelian gauge fields that live in

the Cartan subalgebra, a phenomenon that has received support from lattice studies [30].

It is generally believed that this phenomenom is a consequence of the generation of a mass

gap, decoupling the charged “off-diagonal” degrees of freedom at large distances. In this

work we will refer to abelian dominance as the generation of this gap.

On the theoretical side, abelian dominance, in the above mentioned sense, has also

been discussed in the MAG (see refs. [31, 32] and references therein). On the other hand,

in ref. [19], an “abelianized” form for the Wilson loop in SU(2) Yang-Mills theory has

been presented, not relying on any particular gauge fixing condition. However, in this

scenario, based on the consideration of Petrov-Diakonov representation for the Wilson

loop integral [33] and the field decomposition along a general local color direction, the

charged sector is still coupled.

The combination of abelian dominance and the identification of monopoles that con-

dense in an effective abelian theory would provide a physical understanding of confinement

in Yang-Mills theories. This is the reason why both ideas have been also explored simul-

taneously. For instance, in refs. [34, 35], lattice simulations evidenced a dual Meissner

effect together with an underlying effective Abelian theory for the SU(2) confining vac-

uum. Abelian dominance in the confining part of the static potential coexisting with clear

signals of the dual Meissner effect, in the flux-tube profile between a quark-antiquark pair,

has also been observed [36].

Recently, lattice studies pointed to the idea that other magnetic defects or degrees of

freedom could also be relevant in the nonperturbative sector of pure QCD. The inclusion or

elimination of percolating center vortices, imply quite different phases displaying confine-

ment or deconfinement, and presence or absence of spontaneous chiral symmetry breaking

(see [6]–[10] and refs. therein).

In fact, scenarios only based on either monopoles or center vortices are only partially

successful to describe the behavior of the confining potential between quarks. For instance,

besides linearity, they should account for N-ality dependence at asymptotic distances and

Casimir scaling at intermidiate ones. One advantage in favor of the center vortex picture

is that it would explain N-ality as well as it is compatible with Casimir scaling. On the
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other hand, the monopole picture together with abelian dominance displays some numerical

success (for a review, see ref. [9]).

One promising scenario that could accomodate the different behaviors corresponds

to considering configurations where center vortices and monopoles are correlated. This

correlation has received support from lattice simulations [37]–[39] where center vortices

have been observed to end at monopole worldlines.

Although, at present, we still do not know which are the more important magnetic

defects to be taken into account, it has become clear that confinement has to do with

the identification of the proper class of them, and the evaluation of the consequences the

different associated ensembles may imply on the infrared sector of Yang-Mills theories. This

is reinforced by recent theoretical results for pure Yang-Mills theory in the maximal abelian

gauge (MAG) [14], first observed in the lattice [40], where the nonperturbative information

is restricted to the consideration of the Gribov horizon and the possible dimension two

condensates. There, the gluon and ghost propagators have been shown to be infrared

suppressed. If on the one hand this behavior can be associated with the absence of gluons

in asymptotic states, it also raises a question about the origin of the long range interactions

responsible for quark confinement.

The aim of this article is twofold. Firstly, we will present a careful treatment of

Cho decomposition [4, 19]–[24] when defects are present in the local color frame na, a =

1, 2, 3, needed to decompose the gluon fields. Indeed, by looking at the possible defects

of the complete local color frame, we will be able to discuss not only monopoles but

also center vortices in a natural and unified manner. Both objects can be associated

with different types of defects the frame n̂a, a = 1, 2, 3 can posses. This is in contrast

to what happens when trying to describe defects by means of topologically nontrivial

“gauge” transformations. While monopole-like defects can alternatively be introduced

with a nontrivial transformation, as is well known, thin center vortices cannot, as the

required SU(2) transformation would not be single valued along a class of closed curves,

and the associated discontinuity would introduce an additional ideal vortex localized on

a three-volume, besides the desired center vortex, localized on a closed two-dimensional

surface (see refs. [41, 42]).

Secondly, we will write the Yang-Mills partition function, including the ensemble of

monopoles and center vortices coupled with the gluon fields. In this manner, we will be

able to write an effective model where possible nonperturbative information associated

with gluon fluctuations is parametrized in the ensembles. Up to this point, the discussion

will be general and it could accomodate in the continuum anyone of the important above

mentioned scenarios. At the end, we will discuss the possible relationship between abelian

dominance and a sector of physical center vortices.

In section 2, we obtain the possible singular terms that can appear in the field strength

tensor when working with Cho decomposition and local frames containing defects. In

section 3 and 4, we show that monopoles and center vortices can be naturally unified

as different topological sectors for these frames. Nonabelian transformations in terms of

decomposed fields are discussed in 5, while SU(2) Yang-Mills theory in minimally coupled

form is discussed for the maximal abelian gauge in section 6. In section 7, we derive
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a dual description of Yang-Mills theory that incorporates all the topological sectors. In

section 8, we obtain an effective model for the ensemble of defects and dual fields, showing

the possible feedback of defects on the gluon sector of the theory. Finally, in section 9, we

present our conclusions.

2. Cho decomposition in the presence of defects

In SU(N) Yang-Mills theory the action is given by,

SYM =
1

2

∫

d4x tr (FµνFµν), Fµν = F a
µνT

a, (2.1)

where T a, a = 1, . . . , N2 − 1 are hermitian generators of SU(N) satisfying,

[

T a, T b
]

= ifabcT c, tr (T aT b) =
1

2
δab. (2.2)

As usual, the field strength tensor can be written in terms of the gauge fields Aa
µ, a =

1, . . . , N2 − 1,

Fµν = (i/g) [Dµ,Dν ] , Dµ = ∂µ − igAa
µT

a, (2.3)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.4)

For SU(2), the generators can be realized as T a = τa/2, a = 1, 2, 3, where τa are the

Pauli matrices, and the structure constants fabc are given by the Levi-Civita symbol ǫabc.

We will also use the notation,

~Fµν = ∂µ
~Aν − ∂ν

~Aµ + g ~Aµ × ~Aν , ~Aµ = Aa
µ êa, ~Fµν = F a

µν êa, (2.5)

where êa is the canonical basis in color space.

We take as starting point a general local frame in color space, n̂a, a = 1, 2, 3, which

can be parametrized by means of an orthogonal local transformation R ∈ SO(3),

n̂a = R êa. (2.6)

This frame can be used to represent the gauge field ~Aµ in terms of Cho decomposition,

~Aµ = A(n)
µ n̂− 1

g
n̂× ∂µn̂+ ~X(n)

µ , n̂. ~X(n)
µ = 0, (2.7)

n̂a.n̂b = δab, a, b = 1, 2, 3, n̂ ≡ n̂3. (2.8)

The restricted potential is defined as (see [19] and references therein),

Âµ = A(n)
µ n̂− 1

g
n̂× ∂µn̂. (2.9)

As this is already an SU(2) connection, under gauge transformations ~X
(n)
µ transforms in

the adjoint.
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When dealing with a general configuration containing monopoles, the associated Dirac

worldsheets, and center vortices, we will have to introduce a local frame containing defects

in Euclidean spacetime. Depending on whether these configurations correspond to thin

or thick objects containing a core, the parametrization above will be valid on the whole

Euclidean spacetime, or only outside the core. In the first case, we will have to deal with

singular terms concentrated on the thin objects. In the second case, many results obtained

for thin objects will also serve as an approximation for the contribution outside the cores.

This comes about as the possible terms localized at the core boundaries, that may occur

when manipulating the action, can be approximated by working on the whole Euclidean

spacetime, including singular terms concentrated at the position of the cores.

Therefore, we consider Cho decomposition (2.7), defined on the whole Euclidean space-

time, and compute the field strength tensor,

~Fµν = ∂µÂν − ∂νÂµ + gÂµ × Âν + g ~X(n)
µ × ~X(n)

ν + D̂µ
~X(n)

ν − D̂ν
~X(n)

µ , (2.10)

D̂µ
~X(n)

ν = ∂µ
~X(n)

ν + gÂµ × ~X(n)
ν , (2.11)

keeping track of all the possible singular terms that may arise in the calculation. For the

contribution associated with the restricted potential, we have,

∂µÂν − ∂νÂµ + gÂµ × Âν = F (n)
µν n̂− 2

g
∂µn̂× ∂ν n̂+

1

g
[n̂.(∂µn̂× ∂ν n̂)]n̂ + ~Lµν , (2.12)

F (n)
µν = ∂µA

(n)
ν − ∂νA

(n)
µ , ~Lµν = −1

g
n̂× [∂µ, ∂ν ]n̂ = L1

µν n̂1 + L2
µν n̂2, (2.13)

where we have emphasized that ~Lµν is orthogonal to n̂. This term is concentrated on

two-dimensional surfaces, and could be nontrivial only for local frames containing defects

in the color direction n̂ (see the discussion in section 6).

Now, as the second term in eq. (2.12) and the term ~X
(n)
µ × ~X

(n)
ν in eq. (2.10) are

necessarily along the n̂ direction, we can write,

~Fµν = (F (n)
µν +H(n)

µν +Kµν)n̂+ ~Gµν + ~Lµν , (2.14)

~Gµν = D̂µ
~X(n)

ν −D̂ν
~X(n)

µ , H(n)
µν =−1

g
n̂.(∂µn̂×∂ν n̂), Kµν =gn̂.( ~Xµ× ~Xν). (2.15)

The tensor ~Gµν have been computed in [4, 19]–[22] and turns out to be orthogonal

to n̂, that is, it can be written in the form ~Gµν = G1
µν n̂1 + G2

µν n̂2. When singularities

are present, this result remains analtered. For completness, in appendix A we include the

calculation of the covariant derivative of ~Xµ = X1
µn̂1 +X2

µn̂2, where it is obtained,

D̂µ
~X(n)

ν = [∂µX
1
ν − g(A(n)

µ + C(n)
µ )X2

ν ]n̂1 + [∂µX
2
ν + g(A(n)

µ + C(n)
µ )X1

ν ]n̂2, (2.16)

C(n)
µ = −1

g
n̂1.∂µn̂2. (2.17)

On the other hand, while in refs. [19]–[22], H
(n)
µν has been equated with ∂µC

(n)
ν −∂νC

(n)
µ , to

obtain simpler “abelianized” expressions for the field strength tensor, when dealing with

gauge fields containing defects this relationship must be revised. In fact, when defined
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on the whole Euclidean spacetime, both quantities differ by relevant singular terms (see

section 8). This difference can be obtained by noting that,

∂µC
(n)
ν − ∂νC

(n)
µ = −1

g
[∂µ(n̂1.∂ν n̂2) − ∂ν(n̂1.∂µn̂2)]

= −1

g
[∂µn̂1.∂ν n̂2 − ∂ν n̂1.∂µn̂2] −

1

g
n̂1.[∂µ, ∂ν ]n̂2. (2.18)

Now, using ∂µn̂1.n̂1 = 0, ∂µn̂2.n̂2 = 0, we can write,

∂µn̂1 = α1
µn̂2 + β1

µn̂, ∂µn̂2 = α2
µn̂1 + β2

µn̂, (2.19)

that is,

∂µC
(n)
ν − ∂νC

(n)
µ = −1

g
[β1

µβ
2
ν − β1

νβ
2
µ] − 1

g
n̂1.[∂µ, ∂ν ]n̂2. (2.20)

On the other hand, noting that n̂ = n̂1 × n̂2, we have,

∂µn̂ = ∂µn̂1 × n̂2 + n̂1 × ∂µn̂2

= −β1
µn̂1 − β2

µn̂2, (2.21)

thus obtaining,

n̂.(∂µn̂× ∂ν n̂) = [β1
µβ

2
ν − β1

νβ
2
µ] = −g(∂µC

(n)
ν − ∂νC

(n)
µ ) − n̂1.[∂µ, ∂ν ]n̂2, (2.22)

or, comparing with (2.15),

H(n)
µν = ∂µC

(n)
ν − ∂νC

(n)
µ +D(n)

µν , D(n)
µν =

1

g
n̂1.[∂µ, ∂ν ]n̂2. (2.23)

Then, we see that the difference is nontrivial when the color directions n̂1, n̂2 contain de-

fects.

If the frames were regular, from eqs. (2.13) and (2.23), we would have ~Lµν = ~0,
~Dµν = ~0, and substituting in eq. (2.14), we would obtain the abelianized “noncompact”

simpler form given in ref. [19]–[22],

~Fµν =
(

∂µ(A(n)
ν + C(n)

ν

)

− ∂ν(A
(n)
µ +C(n)

µ ) +Kµν)n̂+ D̂µ
~X(n)

ν − D̂ν
~X(n)

µ . (2.24)

In what follows, we will study eqs. (2.14)–(2.23), exploring possible ensembles of defects

and its consequences. In particular, to study magnetic defects, it will also be convenient to

consider the associated dual expressions, defining the dual tensors using lower-case letters.

For instance, the dual form of the first equation in (2.23) reads,

h(n)
µν = h̃(n)

µν + d(n)
µν (2.25)

h(n)
µν =

1

2
ǫµνρσH

(n)
ρσ , h̃(n)

µν = ǫµνρσ∂ρC
(n)
σ , d(n)

µν =
1

2
ǫµνρσD

(n)
ρσ . (2.26)
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3. Monopoles as defects of the local color frame

The Yang-Mills action is invariant under regular gauge transformations S ∈ SU(N),

~AS
µ . ~T = S ~Aµ. ~TS

−1 + (i/g)S∂µS
−1, ~FS

µν . ~T = S ~Fµν . ~TS
−1, (3.1)

thus implying the color currents,

Ja
µ = gǫabcAb

νF
c
µν , (3.2)

which at the classical level satisfy continuity equations, when computed on the equations

of motion in Minkowski space. The associated conserved charges Qa satisfy a simple

transformation property, when gauge transformations that assume a constant value S∞ at

spatial infinity are considered,

QaT a → S∞Q
aT aS−1

∞ . (3.3)

On the other hand, if on a given background ~Aµ, a nontrivial “gauge” transformation

is introduced,

~AU
µ .
~T = U ~Aµ. ~TU

−1 +
i

g
U∂µU

−1, (3.4)

where U ∈ SU(2) is a topologically nontrivial mapping single valued along any closed loop,

the Yang-Mills action changes. In particular, the field strength for ~AU
µ is,

~FU
µν . ~T = U ~Fµν . ~TU

−1 +
i

g
U [∂µ, ∂ν ]U

−1. (3.5)

As is well known, monopole-like defects can be described by considering the parametriza-

tion (3.4), which is not a simple gauge transformation. That is, the fields ~AU
µ and ~Aµ are

not physically equivalent, because of the second term in eq. (3.5), which is concentrated

on a two-dimensional surface where U is singular. Moreover, if this parametrization were

only valid outside the region where the singularites are concentrated, the field strengths

would be equal on this region, but ~AU
µ and ~Aµ would still be globally inequivalent. Singular

terms can be accepted as long as the associated action is finite, or at least finite results are

obtained after integration over trivial fluctuations around the singular background.

In order to make contact with Cho decomposition, a frame m̂a, a = 1, 2, 3, induced by

the nontrivial single valued U , can be introduced,

UT aU−1 = m̂a. ~T or, m̂a = R(U) êa. (3.6)

This frame can be parametrized in terms of Euler angles,

U = e−iαT3e−iβT2e−iγT3 , R(U) = eαM3eβM2eγM3 , (3.7)

where Ma are the generators of SO(3).

– 7 –
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Using the result obtained in ref. [19] (in appendix B, we present an alternative deriva-

tion),

i

g
U∂µU

−1 = −
(

C(m)
µ m̂+

1

g
m̂× ∂µm̂

)

. ~T , (3.8)

C(m)
µ = −1

g
m̂1.∂µm̂2, (3.9)

we obtain,

~AU
µ . ~T =

[

(A3
µ − C(m)

µ )m̂− 1

g
m̂× ∂µm̂+ A1

µm̂1 + A2
µm̂2

]

. ~T . (3.10)

That is, we have,

~AU
µ = ~Aµ = A(m)

µ m̂− 1

g
m̂× ∂µm̂+ ~X(m)

µ , (3.11)

if we identify,

A(m)
µ = A3

µ − C(m)
µ , ~X(m)

µ = A1
µm̂1 + A2

µm̂2. (3.12)

Both representations (3.4) and (3.11) are equivalent when describing monopoles. How-

ever, as discussed in the next section, while (3.4) cannot be extended to take into account

center vortices, the consideration of Cho decomposition and an appropriate extension of the

class of frames defined by the single valued U ’s in eq. (3.6), will also be useful in that case.

Now, let us consider an example, which will serve as a clue for the inclusion of center

vortices in the framework of Cho decomposition. As already discussed in refs. [19]–[22],

monopole-like singularities in the connection can be described in terms of a defect occuring

in the color direction m̂. There, the consideration of A
(m)
µ = 0, Xa

µ = 0, a = 1, 2 and a

hedgehog form m̂ = ±r̂ (color direction correlated with space direction) leads in 4D to a

“static” Wu-Yang monopole. In 3D Euclidean spacetime this type of configuration is called

an instanton.

A straightforward calculation, using eqs. (2.15) and (2.26), leads to,

gm =

∫

dsi h
(m)
0i = ∓4π

g
, (3.13)

that is m̂ = r̂ (m̂ = −r̂) corresponds to an anti-monopole (monopole). The factor of two,

with respect to the magnetic charge of a Dirac monopole, is associated with the nonabelian

nature of the fields.

A configuration m̂ = m̂3 = r̂ can be obtained with α = ϕ, β = θ, where ϕ and θ are the

polar angles defining r̂, and any choice for γ can be considered, as R ê3 is γ independent.

For instance, we can choose γ = −ϕ. In this case, near θ = 0, R ≈ I, so that the frame

is not singular in the north pole on a spherical surface around the origin. On the other

hand, when θ ≈ π, using R2(π)R3(γ) = R3(−γ)R2(π), we get, R ≈ [R3(ϕ)]2R2(π), so that

around the south pole m̂1, m̂2 is obtained from a 2ϕ rotation of −ê1, ê2, along the third

axis. Then, we see that C
(m)
µ in eq. (3.9) is singular on a (Dirac) worldsheet placed on the

negative z-axis for every (euclidean) time.

Indeed, the calculation of C
(m)
µ gives (see ref. [19]),

C(m)
µ =

1

g
(cos β ∂µα+ ∂µγ), (3.14)

– 8 –
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and the choice of γ is associated with the position of the Dirac worldsheet. In particular,

with the choice γ = −ϕ, U is single valued along any closed loop, as required in eq. (3.4).

In this case,

C(m)
µ =

1

g
(cos θ − 1)∂µϕ, (3.15)

and we verify that this determination is well defined on the positive z-axis, while the Dirac

worldsheet is on the negative z-axis for every Euclidean time. In particular, if we go to a

region close to the Dirac worldsheet (θ ≈ π), we have,

C(m)
µ ≈ −2

g
∂µϕ. (3.16)

Summarizing, while monopoles can be associated with nontrivial m̂ = m̂3 configu-

rations, Dirac worldsheets, carrying flux ±4π/g, can be associated with two-dimensional

defects for the associated m̂1, m̂2 components of the local frame. In the next section we

will show that general configurations, including center vortex defects, can be handled in a

similar manner.

4. Center vortices as defects of the local color frame

Center vortices in SU(N) Yang-Mills theory are essentially defects in the connection such

that the Wilson loop variable gains an element of the center Z(N) when the defect is linked

by the Wilson loop, while it is trivial otherwise. In 4D (3D) center vortices are localized on

closed two-dimensional surfaces (closed one-dimensional strings), as this type of defect is

the one that can be linked by a loop. In a thick center vortex the defining properties above

are valid for Wilson loops passing up to a given minimum distance δ from the defect.

The simpler example is,

Aa
µT

a =
1

g
∂µϕδ

a3T a, (4.1)

for ρ > δ (outside the vortex core), and a different profile for ρ < δ, contributing non-

trivially to the Yang-Mills action. Here, φ and ρ correspond to the polar coordinates

around the two-dimensional surface formed by the z-axis, for every Euclidean time, where

the vortex is placed. For thin center vortices, δ → 0.

If a loop C passing up to a distance δ of the center vortex is considered, the Wilson loop,

W (C) = (1/2) tr P exp

(

ig

∮

dxµA
a
µτ

a/2

)

, (4.2)

gives W (C) = cos π = −1, if the vortex is linked, and W (C) = 1, otherwise.

Unlike monopoles, that can be parametrized as in eq. (3.4)), center vortices, even out-

side the vortex core, cannot be introduced by means of a nontrivial “gauge” transformation.

This comes about because in order to generate a profile of the type given in eq. (4.1), outside

the vortex core, it would be necessary to consider an SU(2) transformation parametrized

by eiϕ T3 . However, as this mapping is not single valued, we would have,

i

g
eiϕ T3∂µe

−iϕ T3 =
1

g
∂µϕδ

a3T a + ideal vortex, (4.3)
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where the additional term (the so called ideal vortex) is localized on the three-volume

where the transformation is discontinuous (see refs. [41, 42]).

On the other hand, we will see that outside the cores, similarly to what happens with

monopoles and their associated Dirac worldsheets, center vortices can be represented by

appropriate frames containing defects. For this aim, in the case of thick objects, we will

call M the manifold outside the vortex cores. Its complement, M̄ = R4 −M , corresponds

to (thick) closed two-dimensional sheets where the physical center vortices are localized. If

the vortices were thin, we could work on the whole Euclidean spacetime, including possible

singular terms in the calculations, as we have done with the Dirac worldsheets.

The possibility of matching general nontrivial configurations containing monopoles,

the associated Dirac worldsheets, and center vortices is evidenced by parametrizing the

gauge fields on M in terms of Cho decomposition, based on an extended class of frames

n̂a, obtained by introducing a V -sector on top of the previously considered monopole

description. That is, extending U → V U , we define the frame n̂a, a = 1, 2, 3,

(V U)T a(V U)−1 = V UT aU−1V −1 = n̂a. ~T . (4.4)

n̂a = R(V U)êa = R(V )R(U)êa = R(V )m̂a. (4.5)

The defining property of V ∈ SU(2) is that it is not single valued along any closed

loop. When following a loop on M , we have,

Vf = eiqπ Vi, (4.6)

where q = 1 or q = 0, depending on whether the center vortex is linked or not.

For example, we can choose V inducing a rotation that leaves m̂ invariant,

V = e−iγvm̂. ~T , (4.7)

where γv changes by 2π when we go around the center vortex once. Note that we can

also write,

V U = e−iγvUT3U−1
U = UV3, V3 = e−iγvT3 . (4.8)

In other words, the consideration of V U amounts to the extension of U by considering

γ → γ + γv (cf. eq. (3.7)).

With the parametrization given by eqs. (4.5) and (4.7), we have,

n̂a = Rm(γv) m̂a, Rm(γv) = eγv m̂. ~M , (4.9)

that is,

n̂ = m̂, h(n)
µν = h(m)

µν , (4.10)

and using eq. (2.17),

C(n)
µ = −1

g
Rm m̂1.[Rm(∂µm̂2) + (∂µRm)m̂2] = C(m)

µ + C(v)
µ , (4.11)

C(m)
µ = −1

g
m̂1.∂µm̂2, C(v)

µ = −1

g
m̂1.(R

−1
m ∂µRm)m̂2 =

1

g
∂µγv. (4.12)
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That is, C
(v)
µ gives the center vortex profile outside the core, with no additional ideal

vortex, as Rm is always single valued when we go around a closed loop. That is, although

V U is not in general single valued, the associated local frame n̂a is, as for the adjoint

representation, R(V U) = R(−V U).

In other words, while monopole-like defects are associated with a nontrivial Π2 for

the space of directions n̂, we can think of center vortices as the natural defects a frame

can have, due to the nontrivial fundamental group of the adjoint representation of SU(N),

needed to define the local frame to decompose the color degrees of freedom.

In this regard note that in SU(N) Yang-Mills theories, a center vortex will be associated

with V ∈ SU(N), defined outside the core, such that it changes from V to ei2π/N V when

a loop x(u) linking the vortex is followed. When we go around a closed surface, following

the loop, we define an open path in the fundamental representation of SU(N), (V U)(u),

and a nontrivial closed path R(u), R = R(V U), in the adjoint representation of SU(N).

This comes about as V U and ei2π/NV U both define the same R transformation. If this

path is composed N times we get a trivial map, as it is associated with a closed path in

the fundamental representation of SU(N), whose first homotopy group is trivial. Then,

the fundamental group of the adjoint representation of SU(N) is Z(N), which labels the

possible charges of center vortices.

Summarizing, the description of monopoles, Dirac worldsheets and center vortices

becomes unified, however, we have to keep in mind that, from the point of view of gauge

transformations, Dirac worldsheets and center vortices are quite different, thus opening

the possibilitity to different behaviors, such as observable vortices vs. unobservable Dirac

worldsheets. Note that on an open two-dimensional Dirac worldsheet the components n̂1

and n̂2 rotate twice when we go around a loop passing close and encircling this surface.

However, this worldsheet is expected to be unobservable. For instance, in the example of

section 3, we can change it from the negative to the positive z-axis by considering an S

gauge transformation of the background field that corresponds to a rotation with angle

2ϕ (cf. eq. 3.4). Although this transformation is singular on the z-axis, it is in the trivial

topological sector of SU(2), as it can be continuosly deformed onto the identity map. On

the other hand, in the case of center vortices, n̂1 and n̂2 rotate once when we go around

a loop linking them and, as already discussed, this cannot be associated with a nontrivial

“gauge” transformation.

The identification of defects in the gauge fields with topological sectors for the local

frames will simplify the discussion relative to the interplay between the different degrees

of freedom of the theory.

5. Nonabelian transformations in terms of Cho variables

From the discussion in the previous sections, the general ansatz on M including monopole

and center vortex defects will be given by Cho decomposition (2.7), with n̂a defined by

eq. (4.4). Using the results obtained in section 2, the dual field strength for this decompo-
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sition is given by,

~fµν =
1

2
ǫµνρσ

~Fρσ = (f (n)
µν + h(n)

µν + kµν)n̂ + (gµν
1 + lµν

1 )n̂1 + (gµν
2 + lµν

2 )n̂2, (5.1)

where the tensors in lower-case are the dual ones associated with F
(n)
µν , H

(n)
µν , Kµν , Gµν

i and

Lµν
i in eqs. (2.13)–(2.16). That is,

f (n)
µν =

1

2
ǫµνρσF

(n)
ρσ , lµν

1 n̂1 + lµν
2 n̂2 =

1

2
ǫµνρσ

~Lµν , kµν = gǫµνρσX
1
ρX

2
σ, (5.2)

gµν
1 = ǫµνρσ[∂ρX

1
σ − g(A(n)

ρ + C(n)
ρ )X2

σ],

gµν
2 = ǫµνρσ[∂ρX

2
σ + g(A(n)

ρ + C(n)
ρ )X1

σ], (5.3)

see also eq. (2.26). Then, for thick vortices, the Yang-Mills action can be written as,

SYM = SM̄ + SM , (5.4)

SM =
1

4

∫

M
d4x [(f (n)

µν + h(n)
µν + kµν)2 + (gµν

1 + lµν
1 )2 + (gµν

2 + lµν
2 )2]. (5.5)

The term SM̄ gives the contribution coming from the vortex cores. As already discussed,

when vortices are thin, this term is absent and the replacement M → R4 must be considered

in eq. (5.5).

Although Cho decomposition assumes an abelianized form, specially when we look at

a local color frame containing no defects, and the fields A
(n)
µ , ~X

(n)
µ , (see eq. 2.24), it is

important to keep in mind that the full nonabelian degrees must be represented in this

formulation, as it is equivalent to the underlying Yang-Mills theory.

In section 7, we will take A
(n)
µ , ~X

(n)
µ as independent variables, so that it is important

to discuss how nonabelian gauge transformations can be translated into “abelianized” lan-

guage. Let us consider a gauge transformation of the gauge field ~Aµ given in eq. (2.7),

decomposed in terms of a general frame n̂a, possibly containing monopole and center vor-

tex defects,

~AS
µ .
~T = S

(

A(n)
µ n̂− 1

g
n̂× ∂µn̂+ ~X(n)

µ

)

. ~TS−1 +
i

g
S∂µS

−1 (5.6)

Because of eqs. (2.7), (4.10) and (B.6), we can also write,

~AS
µ .
~T = S[(A(n)

µ + C(m)
µ )n̂+ ~X(n)

µ ]. ~TS−1 +
i

g
S(U∂µU

−1)S−1 +
i

g
S∂µS

−1

= S[(A(n)
µ + C(m)

µ )n̂+X1
µ n̂1 +X2

µ n̂2]. ~TS
−1 +

i

g
(SU)∂µ(SU)−1, (5.7)

and using again eq. (B.6), we get,

~AS
µ . ~T = [(A(n)

µ + C(m)
µ )n̂′ +X1

µ n̂
′
1 +X2

µ n̂
′
2]. ~T −

(

C(m′)
µ m̂′ +

1

g
m̂′ × ∂µm̂

′
)

. ~T ,

n̂′a. ~T = Sn̂a. ~TS
−1, m̂′

a.
~T = Sm̂a. ~TS

−1. (5.8)
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Note that according to appendix B, the color directions m̂′
a, a = 1, 2, are the ones neces-

sary to compute C
(m′)
µ , while m̂′

3 ≡ m̂′. From eq. (5.8), and using n̂a. ~T = V m̂a. ~TV
−1 (see

section 4), we also obtain,

n̂′a. ~T = V ′m̂′
a. ~TV

′−1, V ′ = SV S−1 = e−iγvSm̂.~TS−1
= e−iγvm̂′. ~T . (5.9)

That is, n̂′ = m̂′, and the gauge transformed field is,

~AS
µ = A(n′)

µ n̂′ − 1

g
n̂′ × ∂µn̂

′ +X1
µ n̂

′
1 +X2

µ n̂
′
2, (5.10)

A(n′)
µ = A(n)

µ + C(m)
µ − C(m′)

µ , n̂′a = R(S) n̂a. (5.11)

Now, using eqs. (5.5), (2.25) and (4.10) we see that the effect of a nonabelian gauge trans-

formation in the Yang-Mills action is,

S′
YM = S′

M̄ + S′
M , (5.12)

S′
M =

1

4

∫

M
d4x [(f (n)

µν + h̃(m)
µν − h̃(m′)

µν + h(n′)
µν + kµν)2 + (g′µν

1 + l′µν
1 )2 + (g′µν

2 + l′µν
2 )2]

=
1

4

∫

M
d4x[(f (n)

µν +h(n)
µν +d(m′)

µν −d(m)
µν +kµν)2+(gµν

1 +l′µν
1 )2+(gµν

2 +l′µν
2 )2], (5.13)

where in the expressions for g′µν
a , a = 1, 2, depending on A

(n′)
µ + C

(n′)
µ (cf. eq. (5.3)), we

used eqs. (4.11) and (4.12), and a similar one derived from eq. (5.9),

C(n′)
µ = C(m′)

µ +
1

g
∂µγv, (5.14)

to obtain the invariance,

A(n′)
µ +C(n′)

µ = A(n)
µ + C(m)

µ − C(m′)
µ + C(n′)

µ = A(n)
µ + C(n)

µ . (5.15)

Of course, when the frames are regular, it is evident that the action is gauge invariant.

In turn, if gauge symmetry is preserved, the only additional terms, when comparing SM

and S′
M (cf. eqs. (5.5) and (5.13)), must correspond to a change of the (unobservable) Dirac

worldsheets (see section 7).

6. Yang-Mills charged fields in minimally coupled form

If in the previous section, we consider a gauge transformation S, representing a frame

rotation with regular angle χ, leaving the local color direction n̂ invariant, eq. (5.11) gives,

A(n′)
µ = A(n)

µ − 1

g
∂µχ, (6.1)

d
(m′)
µν − d

(m)
µν = 0, and l′µν

a = lµν
a . If the defects are chosen such that the singular terms lµν

a ,

a = 1, 2 are nulified, a rotation of the basis elements n̂1, n̂2 can be translated to a U(1)

rotation of the components X1
µ, X2

µ (leaving the basis elements fixed),

A(n)
µ → A(n)

µ − 1

g
∂µχ, Φµ → eiχΦµ, (6.2)

Φµ =
1√
2
(X1

µ + iX2
µ). (6.3)
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Then, in order to associate the fields Φµ with a well defined charged sector, we will take

n̂ as the direction in color space associated with those defects localized on closed strings

(monopoles), while the defects in n̂a, a = 1, 2 will be associated with Dirac worldsheets

and center vortices. In this case, as the n̂ sector does not contain defects localized on

two-dimensional worldsheets, the singular terms lµν
a , l′µν

a , a = 1, 2 vanish.

Note that this ensemble of defects is invariant under regular gauge transformations.

In addition, if a singular gauge transformation S along the direction n̂, living in the trivial

topological sector of SU(2), is considered, the term d
(m)
µν −d(m′)

µν in eq. (5.13) will in general be

nonzero, representing at most a trivial flux 4π/g, concentrated on a closed two-dimensional

worldsheet (see the example in section 3).

Now, in order to emphazise the abelian aspects of the decomposition, let us introduce

the first order formalism, and define the MAG gauge condition.

6.1 Yang-Mills action

The Yang-Mills action can be written as,

SYM = SM̄ +

∫

M
d4x

1

4
[(f (n)

µν + h(n)
µν + kµν)2 + gµν

1 gµν
1 + gµν

2 gµν
2 ]

= SM̄ +

∫

M
d4x

[

1

4
(f (n)

µν + h(n)
µν + kµν)2 +

1

2
ḡµνgµν

]

, (6.4)

where we have defined,

gµν =
1√
2
(gµν

1 + igµν
2 ) = ǫµνρσ[∂ρ + ig(A(n)

ρ + C(n)
ρ )]Φσ, (6.5)

kµν =
g

2i
ǫµνρσ(Φ̄ρΦσ − ΦρΦ̄σ), (6.6)

with Φµ given by eq. (6.3).

Introducing real and complex lagrange multipliers, λµν and Λµν ,

SM =

= Sc +

∫

M
d4x

[

1

4
λµνλµν − i

2
λµν(f

(n)
µν + h(n)

µν + kµν) + iJµ(A(n)
µ + C(n)

µ )

]

,

Sc =

∫

M
d4x

[

1

2
Λ̄µνΛµν − i

2
(Λ̄µνǫµνρσ∂ρΦσ + Λµνǫµνρσ∂ρΦ̄σ)

]

, (6.7)

Here, we can read the action for charged fields minimally coupled to the U(1) color current,

Jµ = − i

2
gǫµνρσΛ̄νρΦσ +

i

2
gǫµνρσΛνρΦ̄σ. (6.8)

Note that the U(1) symmetry now reads,

A(n)
µ → A(n)

µ − ∂µχ, Φµ → eigχΦµ, Λµν → eigχΛµν . (6.9)
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6.2 Gauge fixing

With regard to gauge fixing, we will adopt, for the charged part on M (for a discussion in

the context of Cho decomposition, see ref. [43]),

D̂µ
~X(n)

µ = 0, (6.10)

while for the diagonal fields, we will consider,

∂µ(A(n)
µ + C(n)

µ ) = 0. (6.11)

These conditions can be imposed by means of lagrange multipliers~b = b1n̂1+b2n̂2, β, for the

gauge fixings (6.10) and (6.11), respectively, and including in the path integral the factor,

ei
R

M
d4x [β∂µ(A

(n)
µ +C

(n)
µ )+~b.D̂µ

~X
(n)
µ ]. (6.12)

In addition, we will have a Fadeev-Popov determinant, exponentiated by means of the

associated ghost fields ~c = c1n̂1 + c2n̂2 and c. The action for the ghosts contains a term

quadratic in D̂µ,
∫

M
d4x~c ∗.D̂µD̂µ~c, (6.13)

where ~c ∗ = c̄1n̂1 + c̄2n̂2. This term can be linearized by introducing additional auxiliary

fields ~aµ = aµ
1 n̂1 + aµ

2 n̂2, and a factor of the form,

ei
R

M
d4x (~a ∗

µ .D̂µ~c+c.c) e−
R

M
d4x~a ∗

µ .~aµ . (6.14)

As shown in ref. [31, 44], the renormalization procedure typically introduces additional

quartic ghost terms and other terms coupling the ghosts and the charged fields ~Xµ, con-

taining up to linear terms in D̂µ.

Using eq. (2.16), we can rewrite eq. (6.10) as,

DµΦµ = 0, D̄µΦ̄µ = 0, (6.15)

where we have defined,

Dµ = ∂µ + ig(A(n)
µ + C(n)

µ ), D̄µ = ∂µ − ig(A(n)
µ + C(n)

µ ), (6.16)

and the factor (6.12) results,

e
i

R

M
d4x

h

β∂µ(A
(n)
µ +C

(n)
µ )+b̄DµΦµ+b D̄µΦ̄µ

i

, b =
1√
2
(b1 + ib2). (6.17)

Now, using a formula like (2.16), for D̂µ~c,

D̂µ~c = [∂µc1 − g(A(n)
µ + C(n)

µ )c2]n̂1 + [∂µc2 + g(A(n)
µ + C(n)

µ )c1]n̂2, (6.18)

the factor (6.14) takes the form,

e
i

R

M
d4x

h

āµ
1 [∂µc1−g(A

(n)
µ +C

(n)
µ )c2]+āµ

2 [∂µc2+g(A
(n)
µ +C

(n)
µ )c1]+c.c

i

e−
R

M
d4x~a ∗

µ .~aµ . (6.19)
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The important point is that the gauge fixing part of the measure depends on the combi-

nation A
(n)
µ +C

(n)
µ , and can be written as,

Fgf = F c
gf e

−i
R

M
d4x (A

(n)
µ +C

(n)
µ )Kµ

, (6.20)

where F c
gf is independent of A

(n)
µ , collecting all the other factors and the integration measure

for lagrange multipliers, ghosts and auxiliary fields, while Kµ = ∂µβ + · · · , besides these

fields, also depends on Φµ.

7. General ensembles of defects

As we discussed in sections 3 and 4, one advantage of using Cho decomposition to para-

metrize the gauge fields is that monopoles and center vortices can be represented on the

same footing, by means of a general local color frame containing defects. On the other hand,

it is important to remark that while monopole defects can alternatively be associated with

topologically nontrivial “gauge” transformations, thin center vortices cannot, as a gauge

transformation using an SU(2) transformation multivalued along a closed loop would also

introduce an ideal vortex concentrated on a three-volume.

This opens the possibility of two different behaviors. While open Dirac worldsheets

carrying flux 4π/g remain unobservable, if gauge symmetry is preserved, no symmetry is

present to protect thin center vortices from a destabilization into physical thick center vor-

tices.

The use of monopoles and center vortices as a reasonable phase on top of which gluon

fluctuations can be included depends on their stability. In turn, this stability can be studied

by means of the path integration over gluon fields in the given background, and analyzing

if logZYM aquires a real part due to effective bound states of the charged fields. In that

case |ZYM|2, the probability to persist in the fundamental state of the theory, in a given

background, would be less than one, thus signaling instability.

In ref. [22], the stability of different magnetic configurations have been analyzed to

one loop in the gluon fields. Although some controversy exists with regard to the stability

of center vortices in this approximation [45], lattice simulations [6] point to the idea that

they become observable physical objects, with a thickness of the order of 1fm. That is, the

thin center vortices are expected to be stabilized by generating a finite radius (see also the

discussion in refs. [41] and [46]).

On the other hand, monopoles lead to an unstable phase, which is expected to be stabi-

lized by including monopole-monopole interactions (for a review see [47] and refs. therein).

In general, for a given gauge field Aa
µ, a = 1, 2, 3, many different local frames n̂a can

be introduced to decompose it. In refs. [48, 49], Cho variables have been incorporated by

including, in the partition function for Yang-Mills theory, an identity written as an integral

over local color directions n̂, satisfying n̂.n̂ = 1, and then showing that the Jacobian of the

transformation,
~Aµ, n̂→ A(n)

µ ,X(n)
µ , n̂,

is trivial. The integration over n̂ and the constraint can be represented as an integration

over single valued U transformations, defining n̂ = m̂ = m̂3 through eq. (3.7). In our
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case, this integration includes a summation over different classes of U ’s, implying different

locations for the monopole singularities. with a given prescription for the associated Dirac

worldsheets, to be discussed below. In addition, the center vortex sector will be given by

an additional summation over classes of V ’s, producing distributions of center vortices, on

top of the monopole configurations.

Then, according to the previous discussions, gauge fields with defects will be taken

into account by considering A
(n)
µ , X1

µ, X2
µ as regular fields, and using the parametrization

summarized by eqs. (2.7) and (4.4), defining a local color frame n̂a, a = 1, 2, 3, contain-

ing monopoles, the associated Dirac worldsheets, and center vortex defects. In particular,

according to the discussion in section 6, the Yang-Mills partition function can be repre-

sented as,

ZYM =

∫

[DV ][DU ][DA(n)][DΦ]Fgf e
−SYM

=

∫

[Dλ][DV ][DU ][DA(n)][DΦ][DΛ]F c
gf e

−SM̄−Sc−
R

M
d4x 1

4
λµνλµν ×

×ei
R

M
d4x [ 1

2
λµν(f

(n)
µν +h

(n)
µν +kµν)−Jµ

c (A
(n)
µ +C

(n)
µ )], (7.1)

Jµ
c = Jµ +Kµ, (7.2)

where appropriate boundary conditions are implicit in the path integral measure (finite

temperature periodic conditions, etc.).

It will also be convenient to consider the following parametrization,

λµν = ∂µφν − ∂νφµ +Bµν , (7.3)

with,

∂µφµ = 0, ∂νBµν = 0, (7.4)

also replacing in eq. (7.1),

[Dλ] → [DB][Dφ]FB
gfF

φ
gf , (7.5)

where FB
gf is the part of the measure fixing the condition ∂νBµν = 0,

FB
gf = [Dξµ]ei

R

d4x ξµ∂νBµν , (7.6)

and Fφ
gf is the part of the measure fixing the gauge ∂µφµ = 0,

Fφ
gf = [Dξ]ei

R

d4x ξ∂µφµ . (7.7)

We recall, that in the case of thin center vortices, we have to consider SM̄ = 0 and

M → R4. On the other hand, for thick center vortices, the path integral measure in

eq. (7.1) must also include a gauge fixed path integral over the fields on M̄ , inside the

vortex cores. In this case, at the boundary of M̄ , the gauge fields and the gauge fixing

conditions must be matched with those given in eqs. (2.7) and (6.10), respectively.

Now, we can integrate by parts the term containing f
(n)
µν and note that because of the

A
(n)
µ path integration, a constraint is implicit here for the fields defined on M ,

Jµ
c =

1

2
ǫµνρσ∂νλρσ =

1

2
ǫµνρσ∂νBρσ, (7.8)
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which implies,

∂µJ
µ
c = 0. (7.9)

That is, we can consider the replacement,

∫

M
d4xJµ

c C
(n)
µ →

∫

M
d4x

1

2
ǫµνρσ∂νλρσC

(n)
µ . (7.10)

Again, integrating by parts and using eqs. (2.25) and (2.26) we arrive at,

ZYM =

∫

[Dλ][DV ][DU ][DA(n)][DΦ][DΛ]F c
gf e

−SM̄−Sc−
R

M
d4x 1

4
λµνλµν ×

×ei
R

M
d4x {( 1

2
ǫµνρσ∂νλρσ−Jc

µ)A
(n)
µ + 1

2
λµν(d

(n)
µν +kµν)+∂µ[ 1

2
(A

(n)
σ +C

(n)
σ )ǫµνρσλνρ]}, (7.11)

where [Dλ] is given by eq. (7.5).

7.1 Singular terms

Because of eqs. (4.10)–(4.12), the contributions to d
(n)
µν , associated with the monopole and

vortex ensembles, become separated,

d(n)
µν = h(n)

µν − h̃(n)
µν = d(m)

µν + d(v)
µν , (7.12)

where,

d(m)
µν = h(m)

µν − h̃(m)
µν , (7.13)

d(v)
µν = −h̃(v)

µν = −1

g
ǫµνρσ∂ρ∂σγv. (7.14)

Let us first discuss d
(m)
µν by considering the example in section 3, where m̂3 = r̂. The

difference between h
(m)
µν and h̃

(m)
µν = ǫµνρσ∂ρC

(n)
σ is associated with singularities in the

behavior of C
(m)
µ . Close to the Dirac worldsheet, C

(m)
µ = −2

g∂µϕ + regular term (see

eq. (3.16)), and because of the singularity of ϕ on the z-axis,

h̃
(m)
0i = h

(m)
0i − 4π

g
δ(2)(x1, x2)θ(−x3)δi3, (7.15)

d
(m)
0i =

4π

g
δ(2)(x1, x2)θ(−x3)δi3. (7.16)

That is, in the whole Euclidean spacetime, the only difference between h
(m)
0i and h̃

(m)
0i is

that the “field lines” of the second are closed.

Of course, in 4D the monopole above corresponds to an infinite string-like defect,

placed at ~x = 0, at every time x0, which defines the border of the open two-dimensional

Dirac worldsheet. In general, the relevant monopole string-like defects, having infrared

finite euclidean action, must be in fact closed strings. In this case, the difference d
(m)
µν

contains an additional contribution concentrated on an open two-dimensional Dirac world-

sheet (the string-like monopoles are at the border) such that, ∂ν h̃
(m)
µν = 0, everywhere. As
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a consequence,

d(m)
µν = h(m)

µν − h̃(m)
µν =

4π

g

∫

dσ1dσ2

(

∂xµ

∂σ1

∂xν

∂σ2
− ∂xµ

∂σ2

∂xν

∂σ1

)

δ(4)(x− x(σ1, σ2))

=
4π

g

∫

d2σµν δ
(4)(x− x(σ1, σ2)). (7.17)

Here, x(σ1, σ2) is the Dirac worldsheet for a monopole anti-monopole pair.

Considering that σ2 ∈ [0, 1] corresponds to the periodic direction,

xµ(σ1, 0) = xµ(σ1, 1),

while σ1 ∈ [0, 1] corresponds to the open direction, we obtain,

∂νd
(m)
µν =

4π

g

∫

dσ1dσ2

(

∂

∂σ1

(

∂xµ

∂σ2
δ(4)
)

− ∂

∂σ2

(

∂xµ

∂σ1
δ(4)
))

=
4π

g

∫

dσ1dσ2
∂

∂σ1

(

∂xµ

∂σ2
δ(4)
)

=
4π

g

∫

dσ2

(

∂xµ

∂σ2

∣

∣

∣

∣

σ2=1

δ(4)(x− x(1, σ2)) −
∂xµ

∂σ2

∣

∣

∣

∣

σ2=0

δ(4)(x− x(0, σ2))

)

=
4π

g

(
∮

C+

dyµ δ
(4)(x− y) −

∮

C−

dyµ δ
(4)(x− y)

)

, (7.18)

where C+ (C−) is the loop where the monopole (anti-monopole) is localized.

Similarly, as γv is singular on a closed two-dimensional surface, changing by 2π when

we go around it, when eq. (7.14) is extended to the whole Euclidean spacetime, d
(v)
µν is

nontrivial, and for a general center vortex,

d(v)
µν =

2π

g

∫

dσ1dσ2

(

∂xµ

∂σ1

∂xν

∂σ2
− ∂xµ

∂σ2

∂xν

∂σ1

)

δ(4)(x− x(σ1, σ2))

=
2π

g

∮

d2σµν δ
(4)(x− x(σ1, σ2)), (7.19)

where x(σ1, σ2) is the closed two-dimensional surface Σ where the singularity is concen-

trated. In this case, as the surface is closed, proceeding as in eq. (7.18), we obtain,

∂νd
(v)
µν = 0. (7.20)

7.2 Correlated defects

As mentioned in the introduction, according to lattice studies, the relevant configurations

could be in fact correlated center vortices and monopoles. It is easy to see that this

situation can also be accomodated by using Cho decomposition. In the example at the

end of section 3, when discussing a typical monopole configuration with α = ϕ, β = θ,

we considered the case γ = −ϕ. On the other hand, in that example, a parametrization

of the pure monopole sector with γ = 0 cannot be done as this would imply a nonsingle

valued mapping. However, as we have seen in section 4 the center vortex sector can be
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parametrized on top of the monopole sector U by means of a nonsingle valued V . The

consideration of γv = +ϕ in eq. (4.7), and the monopole defined by γ = −ϕ, leads to a

well defined local frame to decompose the gauge fields. According to eqs. (2.26) and (5.3),

the Yang-Mills action can be written in terms of C
(n)
µ , which in this case is given by,

C(n)
µ =

1

g
cos θ ∂µϕ, (7.21)

which represents two center vortices (on the positive and negative z-axis, respectively)

attached to a monopole placed at the origin of coordinates.

General configurations with center vortices forming monopole/anti-monopole chains

can be similarly parametrized. Of course, when two center vortices coincide we have in

fact a Dirac worldsheet that is not physical, and that could be changed by means of a

gauge transformation.

As correlated monopoles and center vortices can be constructed in terms of a local

frame parametrized by the usual U and V sectors, their contribution to d
(n)
µν is similar to

the above calculation, with the difference that now it is concentrated on vortex worldsheets

attached to monopole worldlines.

8. Effective model

If closed center vortices are thick, we can consider in eq. (7.11) the replacement d
(n)
µν =

d
(m)
µν + d

(v)
µν → d

(m)
µν , as d

(v)
µν is concentrated on M̄ ,

∫

M
d4x

1

2
λµνd

(n)
µν =

∫

M
d4x

1

2
λµνd

(m)
µν . (8.1)

We also note that the integration over A
(n)
µ , a field living on M , represents a Dirac delta

functional δM [12ǫµνρσ∂νλρσ − Jc
µ], defined as a constraint on M , which depends on fields

not transformed when a gauge transformation is performed (see eqs. (5.11) and (6.8)). In

addition, kµν and the last term in the exponent of eq. (7.11), defined at ∂M , are also

gauge invariant (cf. eqs. (5.2) and (5.15)). Therefore, if a gauge transformation along the

local color direction n̂ is considered, the only change in eq. (7.11) occurs in d
(m)
µν , the Dirac

worldsheet coupled with λµν , leaving the monopoles, represented by ∂νd
(m)
µν = ∂νh

(m)
µν , fixed.

If gauge transformations remain unbroken by infrared quantum effects, the Dirac world-

sheets are unobservable, and any choice for them is equally acceptable, only their borders,

where monopoles are localized, are physically relevant. In ref. [50] we show that when

working on the whole Euclidean spacetime, for a given monopole configuration, and for

each Bµν realization, it is always possible to choose a Dirac worldsheet such that,

∫

d4x
1

2
Bµνd

(m)
µν =

2π

g

∫

d2σµν Bµν = 0. (8.2)

The argument to obtain this condition depends on the possibility of continuously deforming

worldsheets with fixed boundaries one into another. As this is not generally valid on M̄ ,
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in order to give a simplifying choice, we can consider the extension of the fields inside M̄

and write,
∫

M
d4x

1

2
λµνd

(m)
µν

=

∫

d4x
1

2
λµνd

(m)
µν −

∫

M̄
d4x

1

2
λµνd

(m)
µν

=

∫

d4xφµ∂νd
(m)
µν +

∫

d4x
1

2
Bµνd

(m)
µν −

∫

M̄
d4x

1

2
λµνd

(m)
µν . (8.3)

On the other hand, using Gauss theorem, the boundary term depending on C
(n)
µ in eq. (7.11)

will give a relevant term, as C
(n)
µ is topologically nontrivial there. At large distances, this

term can be estimated by considering the extensions of λµν and C
(n)
µ inside M̄ , and using

Gauss theorem to write,
∫

M
d4x ∂µ

[

1

2
C(n)

σ ǫµνρσλνρ

]

= −
∫

M̄
d4x ∂µ

[

1

2
C(n)

σ ǫµνρσλνρ

]

=

∫

M̄
d4x

1

2
λµν(d

(v)
µν + d(m)

µν − h(m)
µν ) −

∫

M̄
d4x

1

2
ǫµνρσ∂µλνρ C

(n)
σ , (8.4)

where the parentesis corresponds to −h̃(n)
µν , rewritten by using eqs. (4.10) and (7.12). Here,

as d
(v)
µν is concentrated on M̄ , we can replace M̄ → R4 in the corresponding integral. Then,

using eqs. (8.1)–(8.4), we get,
∫

M
d4x

1

2
λµνd

(n)
µν +

∫

M
d4x ∂µ

[

1

2
C(n)

σ ǫµνρσλνρ

]

=

=

∫

d4xφµ∂νd
(m)
µν +

∫

d4x
1

2
λµνd

(v)
µν + O(δ)

=
π

g

∑

v

∮

d2σµν Bµν +
4π

g

∑

ij

(

∮

C+
j

dyµ φµ −
∮

C−

i

dyµ φµ

)

+ O(δ). (8.5)

This equation gives the coupling of φµ with the monopole/anti-monopole ensemble plus the

coupling of center vortices and the sector Bµν , which represent the U(1) color current Jc
µ.

Terms only depending on regular fields, such as λµν , A
(n)
µ , Φµ, when extended to the

whole Euclidean spacetime, will introduce additional terms of order δ. Now, when δ is very

small, or equivalently at large distances, we will disregard the terms of order δ. In addition,

the contribution associated with the region M̄ , inside the vortex cores, will be taken into

account by simply replacing SM̄ by the large distance behavior SΣ for the physical center

vortex profile, as this is the dominant term inside the core. Here, Σ is the two-dimensional

worldsheet around which thick center vortices are localized (Σ ⊂ M̄). The action SΣ is

expected to contain a Nambu-Goto term, representing physical objects (see [41]), plus other

possible terms associated with rigidity [51].

In this manner, in order to study the feedback, on gauge fields, of a phase where

center vortices become physical and Dirac worldsheets remain unobservable, it is sensible

to consider the approximation,

ZYM ≈
∫

[DB][Dφ]FB
gfF

φ
gf e

−SD [λµν ]−Sv,m[Bµν ,φµ], (8.6)
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where λµν is given by eq. (7.3) and,

e−SD[λµν ] =

∫

[DA(n)][DΦ][DΛ]F c
gf ×

×e−Sc+i
R

d4x [( 1
2
ǫµνρσ∂νλρσ−Jµ

c )A
(n)
µ + 1

2
λµνkµν ] × e−

R

d4x 1
4
λµνλµν , (8.7)

e−Sv,m[Bµν ,φµ] =

∫

[Dvor][Dmon] e
i π

g

P

v

H

d2σµν Bµν+i 4π
g

P

ij

„

H

C
+
j

dyµ φµ−
H

C
−

i

dyµ φµ

«

, (8.8)

[Dvor] = [DV ] e−SΣ . (8.9)

If monopoles are uncorrelated with closed center vortices, based on eq. (8.8) we can write,

Sv,m[Bµν , φµ] = Sv[Bµν ] + Sm[φµ], (8.10)

where,

e−Sv [Bµν ] =

∫

[Dvor] ei
π
g

P

v

H

d2σµν Bµν , (8.11)

e−Sm[φµ] =

∫

[Dmon] e
i 4π

g

P

ij

„

H

C
+
j

dyµ φµ−
H

C
−

i

dyµ φµ

«

. (8.12)

On the other hand, for correlated defects, with center vortices forming chains of monopoles

and anti-monopoles, it is easy to see that we have to consider in eq. (8.6) the replacement

Sv,m → S′
v,m,

e−S′

v,m[Bµν ,φµ] =

∫

[Dvor][Dmon] e
i π

g

P

v

R

d2σµν Bµν+i 4π
g

P

ij

„

H

C
+
j

dyµ φµ−
H

C
−

i

dyµ φµ

«

, (8.13)

where Bµν is now integrated over vortex worldsheets attached (in pairs) to the correspond-

ing monopole worldlines.

In general, the main nonperturbative information induced by the gluon fluctuations

has been included in the modified measure for the ensembles of defects. Similar represen-

tations have been discussed in 3D gauge models with monopoles and charged fields (see

refs. [52, 53]).

Note that in eq. (8.7), SD[λµν ] contains no reference to the local frame n̂i, as the fields

A
(n)
µ , Φµ, . . . , are simply dummy variables. Then, this term coincides with the dual action

for the linearized form of Yang-Mills theory, discussed in refs. [54]–[56], for the usual gauge

field decomposition with respect to the canonical frame. The universal character of the

mapping between a charge current and a topological current (cf. eq. (7.8)) in this type of

dual representation has been discussed in ref. [57].

The Λµν path-integration in eq. (8.7) leads back to the standard quadratic term for

the action of a charged field Φµ coupled with the U(1) gauge field A
(n)
µ . As discussed in

refs. [54]–[56], as kµν is also quadratic in the charged fields, the Φµ path integral gives a

functional determinant. The one-loop calculation, including ghosts and lagrange multipli-

ers, has been carried out in ref. [56]. Using that result, the dual action SD[λµν ] can be

written as a gaussian path integral in A
(n)
µ , where the exponent contains a combination
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of f
(n)
µν f

(n)
µν , ǫµνρσ∂νλρσA

(n)
µ and λµνλµν , which can be performed, with the gauge fixing

condition ∂µA
(n)
µ = 0, to obtain,

SD[λµν ] ≈
∫

d4x

[

γ

4
H̃µ

1

(−∂2)
H̃µ +

1

4
(1 + β)λµνλµν

]

, (8.14)

H̃µ = ǫµνρσ∂νλρσ = ǫµνρσ∂νBρσ. (8.15)

Integrating by parts the first term in eq. (8.14) and the crossed term that appears when

using eq. (7.3), the dual action can be written in the form,

SD[λµν ] ≈
∫

d4x

[

1

4
(1 + α)BµνBµν +

1

4
(1 + β)(∂µφν − ∂νφµ)2

]

, (8.16)

where α = γ + β and an additional term proportional to ∂νBµν has been eliminated by

taken into account the gauge fixing condition (7.4), or more precisely, by translating the

lagrange multiplier ξµ in eq. (7.6) to cancel the additional term.

For instance, let us consider a phase where closed center vortices, uncorrelated with

monopoles, become thick tensile objects. In this case, we can write,

ZYM ≈
∫

[DB][Dφ]FB
gfF

φ
gf e

−I[λµν ] ×

×e−
R

d4x [ 1
4
(1+α) BµνBµν+ 1

4
(1+β)(∂µφν−∂νφµ)2]−Sv[Bµν ]−Sm[φµ], (8.17)

where I[λµν ] contains perturbative interactions between Bµν and φµ.

The representation (8.17) is suitable to study the interplay between the different sec-

tors of Yang-Mills theory. First, we note that Sv[Bµν ] in eq. (8.11) is symmetric under

the transformation Bµν + ∂µχν − ∂νχµ, as the vortices are associated with closed two-

dimensional surfaces.

At large distances, and noting that the mass dimension of Bµν is two, the following

form is expected,

Sv[Bµν ] ≈
∫

d4x
1

Λ2
o

HµνρH
µνρ

≈
∫

d4x
1

Λ2
o

H̃µH̃µ, (8.18)

H̃µ = ǫµνρσ∂νBρσ, Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ. (8.19)

In fact, this can be compared with the situation in 3D Euclidean spacetime. In that

case, thick tensile center vortices would be closed strings and SM̄ would contain a term

proportional to the string length, with a positive mass (there is an energy cost to enlarge the

center vortex). From polymer physics, it is well known that an ensemble of such observable

strings can be considered as a second quantized field theory for a complex scalar field (with

positive mass) coupled with a field Bµ, which is analogous to Bµν , now representing the

charged sector in 3D according to,

Jµ
c = H̃µ = ǫµνρ∂νBρ. (8.20)
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Because of the mass scale, the large distance effective action after path integrating over

the scalar field is naturally dominated by a Maxwell term, (1/Λ2
o) H̃µH̃µ.

Similarly, coming back to 4D, for thick tensile center vortices the mass scale in SM̄ is

expected to imply the large distance behavior in eqs. (8.18), (8.19) (see also refs. [58]–[61]).

This, together with the B2
µν term in eq. (8.17), implies that the charged sector represented

by Bµν contains a massive Kalb-Ramond action. On the other hand, if no mass scale were

associated with center vortices, Sv[Bµν ] would be a complicated nonlocal action with no

well defined large distance expansion. With regard to the relationship between Yang-Mills

theories and a (confining) string theory see ref. [62, 63].

Then, if the off-diagonal mass Λo is the larger one in the model, greater than the

mass scale that can be generated in the monopole sector, the Bµν field is decoupled at

large distances,

Bµν ≈ 0. (8.21)

According to eq. (7.8), this can be interpreted by stating that the sector of physical center

vortices leads to a phase where a chromoelectric current is driven to zero, decoupling the

charged sector in Yang-Mills theories.

In this scenario, the partition function is dominated by a compact QED(4) model for

the field φµ. As is well known, this type of model is confining in a phase where monopoles

condense [16]. As usual, this phase can be analyzed using tools from polymer physics,

where the ensemble integration over string-like monopoles, can be represented by means

of a second quantized complex field ψ, coupled to the gauge field φµ (see refs. [64]–[67, 47]

and references therein). In fact, in ref. [22], the Yang-Mills effective theory in a monopole

background has been considered, showing that these objects are unstable. This corresponds

to considering the squared mass for ψ as negative, and taking into account contact interac-

tions between the string-like monopoles, a quartic term λ(ψ̄ψ)2 in ψ-language, to stabilize

the system. In other words, the field ψ undergoes a spontaneous symmetry breaking, repre-

senting the condensation of monopole degrees of freedom, and φµ becomes a massive vector

field, with a mass scale that has been assumed to be smaller than Λ0, the off-diagonal mass

that first decouples the charged sector.

9. Conclusions

Recent studies in pure Yang-Mills theory, that include as nonperturbative information the

Gribov horizon and possible condensates, point to infrared suppressed gluon and ghost

propagators. If on the one hand this behavior implies the abscence of gluons in the asymp-

totic spectrum of the theory, it raises the problem of how long range confining quark

interactions can be implied. One promising source for this type of behavior resides in

the inclusion of topological defects, looking at the possible phases that could be induced

by nonperturbative gluon fluctuations. This is one of the reasons to search for a simple

description of continuum Yang-Mills theory including all topological sectors. In the first

part of this work, we have obtained such a description, by unifying monopoles and center

vortices as different classes of defects in the local color frame n̂a = R êa, R ∈ SO(3), used

in Cho decomposition.
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In the second part, relying on this procedure, where center vortices are constructed on

top of monopole configurations, we have derived an effective model for Yang-Mills theory

where the main nonperturbative information has been parametrized in a modified mea-

sure for the ensembles of defects. In this scenario, abelian dominance can be understood

as the feedback, on the charged modes, of a phase where center vortices become physi-

cal, leaving a compact abelian theory which is expected to be confining in a phase where

monopoles condense.

When studying abelian projection scenarios, the gauge fields are generally separated

into “diagonal” fields, living in the Cartan subalgebra of SU(N), and “off-diagonal” charged

fields. For instance, in the case of SU(2), the uncharged sector can be chosen along the ê3
direction in color space, while the components along ê1 and ê2 correspond to the charged

sector. In Cho decomposition, this separation into charged and uncharged sectors, with

respect to an abelian subgroup of SU(2) rotations, is also implemented, with the advantage

that it is naturally done along a general n̂3 ≡ n̂ local direction in color space.

Compared with the field strength tensor computed in refs. [19]–[22], we have identified

two types of singular terms, when working with color frames containing defects. The first

one, ~Lµν in eq. (2.13), depends on defects of the third component n̂3 ≡ n̂, and occurs in

the charged sector of the field strength tensor. In section 6, we have seen that in order to

preserve the U(1) symmetry of the theory, associated with phase transformations of the

charged field Φρ = 1√
2
(X1

ρ + iX2
ρ ), the possible singularities are restricted by the condition

~Lµν = ~0. This implies that n̂ can have at most defects concentrated on closed strings. As is

well known, this corresponds to monopoles, characterized by Π2(S
2) = Z, and a piece h

(n)
µν ,

with nontrivial divergence, added to the the dual field strength f
(n)
µν , in the zero charge

sector of the theory.

The second type occurs when trying to express the monopole part h
(n)
µν of the dual

field strength in terms of the monopole potential Cµ. When the components n̂1 and n̂2

contain defects, h
(n)
µν and h̃

(n)
µν = ǫµνρσ∂ρCσ differ by singular terms which are important to

understand the possible consequences of the ensembles of defects in Yang-Mills theory.

In particular, we have seen that when a monopole singularity for n̂ occurs, this is

accompanied by defects of n̂1 and n̂2 on an open two-dimensional worldsheet, having the

monopoles at the boundaries. This defect corresponds to the Dirac worldsheet. If we

stay close to the worldsheet and go around it once, the components n̂1, n̂2 rotate twice.

This is associated with the magnetic flux 4π/g carried by the Dirac worldsheet, match-

ing the magnetic flux 4π/g emanating from monopoles in nonabelian theories. For fixed

monopole positions, the Dirac worldsheet can be changed by performing a topologically

trivial SU(2) gauge transformation, representing a rotation along the n̂ direction. As long

as this symmetry is not broken, the Dirac worldsheets remain unobservable objects.

The discussion above led us to consider other possible defects of the local color frame,

concentrated on closed two-dimensional surfaces, such that the components n̂1, n̂2 rotate

once, when we go around the defect, and the third component n̂ is nonsingular on these

surfaces. Precisely, these defects correspond to center vortices carrying magnetic flux

2π/g. In short, center vortices can be associated with the nontrivial first homotopy group
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Π1 = Z(2) of SO(3), which defines a general local color frame by n̂a = R êa, R ∈ SO(3).

A general distribution of defects can be obtained by constructing center vortices on top of

the monopole configurations.

The important point is that although R ∈ SO(3) can be thought of as an adjoint

representation of an SU(2) mapping, when center vortices are present, they cannot be

associated with a topologically nontrivial “gauge” transformation. In this case, the nec-

essary SU(2) transformation would not be single valued, and additional defects localized

on the three-volumes where this transformation is discontinuous would also be introduced

(ideal vortices).

This opens the possibility of two different behaviors. While open Dirac worldsheets

remain unobservable, no symmetry is present to protect thin center vortices from a desta-

bilization into physical thick center vortices.

In fact, the use of center vortices and monopoles as a reasonable phase, that serves

as a background to include gluon fluctuations, depends on their stability. In turn, this

stability can be studied by means of the path integration over gluon fields, analyzing if

the probability to persist in the fundamental state, in the given background, is less than

one. Indeed, lattice simulations point to the idea that center vortices become stabilized

by generating a finite radius, with a thickness of the order of 1fm. In that case, the

parametrization of center vortices in terms of defects of a local frame is only valid outside

the center vortex cores.

After gauging out the Dirac worldsheets, we obtained a representation for the partition

function where the main nonperturbative information induced by gluon fluctuations has

been parametrized in a modified measure for general ensembles of center vortices and

monopoles, which are coupled with the dual form of SU(2) Yang-Mills theory. This dual

form depends on fields φµ, Bµν , and coincides with the one that would be obtained in

Yang-Mills theory without defects, and using the usual canonical basis to decompose the

gauge fields.

If center vortices were thin objects, the associated ensemble integration would imply

complicated nonlocal terms for Bµν , with no well defined large distance expansion. By

the way, in this case, a representation similar to the one presented here could be useful

to study the possible effect of nonperturbative gluon fluctuations on monopoles and thin

center vortices.

On the other hand, in a phase where center vortices become thick tensile objects,

uncorrelated with monopoles, we have shown that a massive Kalb-Ramond term is expected

to be induced. If this “off-diagonal” mass happens to be the larger one in the model, the

Bµν field decouples at large distances, Bµν ≈ 0, and the partition function is dominated

by a compact QED(4) model, which is known to be confining when monopoles condense

(see [15, 16, 68] and references therein).

The scenario we have presented can be compared with other destabilizations in Field

Theory. For instance, if a Fermi liquid in 1D, associated with gapless fermion modes in

(1+1)D, is coupled to phonons, the path integral over the gapless fermions induces a Peierls

instability, where the phonon field aquires a nonzero expectation value. In turn, the effect

of this instability can be analyzed by coupling, from the beginning, the previously gapless
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fermion modes with the modified phase for the phonon field. This feedback leads to fermion

modes that acquire a gap, that is, a metal-insulator transition is induced.

In our case, from a physical point of view, because of the dual mapping Jc
µ =

(1/2)ǫµνρσ∂νBρσ, the decoupling of Bµν can be interpreted by stating that the sector of

physical center vortices leads to a phase where a chromoelectric current is driven to zero,

thus characterizing a superconductor of chromomagnetic charges. This also suggests that

the feedback of an induced finite radius for center vortices, due to gluon fluctuations, is

the decoupling of the charged sector in Yang-Mills theories, that is, abelian dominance.

It is important to emphasize that how thin center vortices could be destabilized into

a phase of thick vortices is still an open problem. We believe that it would be interesting

to pursue further studies to characterize the stable phase when monopoles and center

vortices coexist.

In this regard, we would like to underline the following points.

Following Petrov-Diakonov approach [33], the procedure we have followed here for the

partition function can be adapted to represent the Wilson loop and discuss the conditions

to obtain an area law and the associated long range confining interactions [69]. As occurs

in eqs. (8.8) and (8.13), where the monopole sector couples with φµ and the center vortex

sector couples with Bµν , in the Wilson loop average there will be terms where monopoles

and center vortices couple with ψµ and Rµν , respectively; these fields are defined similarly

to eq. (7.3) by,

sµν = ∂µψν − ∂νψµ +Rµν , (9.1)

with,

∂µψµ = 0, ∂νRµν = 0, (9.2)

where sµν is a source with support on a surface having the Wilson loop as boundary. That

is, ψν depends on ∂µsµν , concentrated on the surface, while Rµν depends on ǫµνρσ∂νsρσ,

concentrated on the perimeter.

In the above mentioned phase where closed center vortices become thick tensile objects,

and they are uncorrelated with monopoles, the vortex integration will lead at large distances

to new terms depending on the perimeter, so that in this case the area law is expected to be

only due to the monopole sector. Note that this situation corresponds to nonpercolating

vortices, as the large distance behavior in eq. (8.18) corresponds to an ensemble where

large tensile objects have vanishing weight.

On the other hand, when center vortices percolate, the large distance behavior in

eq. (8.18) cannot be applied. In this case, the ensemble integration in eqs. (8.8) and (8.13)

has to be discussed separately.

In this respect, it is important to note that the coupling of closed center vortices with

Rµν gives the linking between them and the Wilson loop. In the lattice, when center vortices

percolate, the average of (−1)n, where n is the number of vortices linking the loop, is known

to be associated with a confining phase (see [9] and references therein). It is also interesting

to note that this type of factor would also be present in our representation when chains of

monopoles and anti-monopoles joined by center vortices are considered (see ref. [69]). In

this case, n would be given by the number of chains linking the Wilson loop. However,
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differences when compared with a model only containing percolating center vortices are

expected, because of the new couplings between defects and the dual fields φµ and Bµν .

Here, we have shown that the role of a phase of tensile center vortices is that of

abelianizing the theory at large distances. In this case, the area law is produced by an

uncorrelated sector of monopoles. However, it would be very interesting to study a phase

formed by percolating chains of monopoles and anti-monopoles as according to refs. [37]–

[39] they could be the relevant configurations to accomodate all the properties that should

be displayed by the confining potential between quarks. The representation we have derived

could play an important role to implement such studies in the continuum.
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A. Covariant derivative in “abelianized” form

Using eqs. (2.9) and (2.11), we obtain,

D̂µ
~X(n)

ν = n̂1(∂µX
1
ν − gA(n)

µ X2
ν ) + n̂2(∂µX

2
ν + gA(n)

µ X1
ν )

+X1
ν∂µn̂1 +X2

ν∂µn̂2 + +n̂[(X1
ν n̂1 +X2

ν n̂2).∂µn̂]. (A.1)

Now, projecting with n̂i, we get,

n̂1.D̂µ
~X(n)

ν = ∂µX
1
ν − gA(n)

µ X2
ν + n̂1.∂µn̂2X

2
ν , (A.2)

n̂2.D̂µ
~X(n)

ν = ∂µX
2
ν + gA(n)

µ X1
ν + n̂2.∂µn̂1X

1
ν

= ∂µX
2
ν + gAµX

1
ν − n̂1.∂µn̂2X

1
ν , (A.3)

n̂.D̂µ
~X(n)

ν = = X1
ν n̂.∂µn̂1 +X2

ν n̂.∂µn̂2 +

+(X1
ν n̂1 +X2

ν n̂2).∂µn̂ = 0, (A.4)

and defining,

−gC(n)
µ = n̂1.∂µn̂2, (A.5)

we obtain eq. (2.16).

B. Decomposition of “pure gauge” fields

For a generally nontrivial U ∈ SU(2), single valued along any closed loop, we have,

i

g
U∂µU

−1 =
2i

g

∑

a

tr (U∂µU
−1m̂a. ~T ) m̂a. ~T
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=
2i

g

∑

a

tr (U∂µU
−1 UT aU−1) m̂a. ~T

= − i

g

∑

a

tr (U−1∂µUτ
a) m̂a. ~T .

(B.1)

On the other hand, recalling that τ3 = 2T 3, iT 3 = [T 1, T 2], we can write,

i

g
tr [τ3U−1∂µU ] =

2

g
tr [T 1T 2U−1∂µU − T 2T 1U−1∂µU ]

= −2

g
tr [T 1T 2∂µU

−1U + T 2T 1U−1∂µU ]

= −2

g
tr [(UT 1U−1)UT 2∂µU

−1 + (UT 1U−1)∂µUT
2U−1]

= −2

g
tr [(UT 1U−1)∂µ(UT 2U−1)]. (B.2)

Then, defining UT aU−1 = m̂a. ~T , and using tr (T aT b) = 1
2δ

ab, we get,

i

g
tr [τ3U−1∂µU ] = −1

g
m̂1.∂µm̂2 = C(m)

µ . (B.3)

Working in a similar manner with the other two terms in eq. (B.1),

i

g
U∂µU

−1 =

(

−C(m)
µ m̂+

1

g
(m̂2.∂µm̂) m̂1 +

1

g
(m̂.∂µm̂1) m̂2

)

. ~T (B.4)

where we have defined m̂3 = m̂. Now, noting that,

−1

g
m̂× ∂µm̂ = −1

g
m̂× ∂µ(m̂1 × m̂2)

=
1

g
(m̂.∂µm̂1) m̂2 + (m̂2.∂µm̂) m̂1, (B.5)

we finally obtain,
i

g
U∂µU

−1 = −
(

C(m)
µ m̂+

1

g
m̂× ∂µm̂

)

. ~T . (B.6)

The results above have been previously obtained in [70], by following a different route.

Note also that the expression i
gU∂µU

−1 in eq. (B.4) treats the different elements of the

frame symmetrically, so that we can single out any of them to make the decomposition.
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